PERCEPTUAL PREFERENCE OF S3D OVER 2D FOR HDTV IN

DEPENDENCE OF VIDEO QUALITY AND DEPTH

Pierre Lebreton, Alexander Raake, Marcus Barkowsky, Patrick Le Callet VQEG, 07/08-12/2013

LIFE IS FOR SHARING.

- Motivation
- Experiment
- Results
- Conclusion

Motivation Evaluating 3D QoE

Evaluation of overall 3D QoE is difficult

No statistical differences between 3D and 2D QoE ?

[1] Brunnström, K.; Sedano, I.; Wang, K.; Barkowsky, M.; Kihl, M.; Andrén, B.; Callet, P. L.; Sjöström, M. & Aurelius, A. (2012), "2D No-Reference Video Quality Model development and 3D video transmission quality", International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM)', Scottsdale, Arizona, USA.

[2] Lebreton, P.; Raake, A.; Barkowsky, M. & Callet, P. L. (2011), "A subjective evaluation of 3D IPTV broadcasting implementations considering coding and transmission degradation" IEEE International Workshop on Multimedia Quality of Experience, MQoE11', Dana Point, CA, USA.

Motivation The use of others evaluation concept

- Evaluation of QoE using other evaluation concepts [1]
- How close these evaluation concepts are from QoE?
- Are your sure that people understand your question?

[1] Seuntiëns, P. J. (2006), "Visual experience of 3D TV", PhD thesis, Eindhoven University.

Motivation The use of pairwise comparison

- Simple question: evaluation of preference between presentation!
- Take into account all factors involved in QoE

- Motivation
- Experiment
- Results
- Conclusion

Experiment Research questions

- Evaluate the distance between 2D and 3D QoE?
- Preference of 3D over 2D depending on image quality and content characteristics?
- Content characteristics vs. Coding Relative importance?

Lebreton, P.; Raake, A.; Barkowsky, M. & Callet, P. L. (2012), 'Evaluating depth perception of 3D stereoscopic videos', *IEEE Journal of Selected Topics in Signal* TELEKOM INNOVATION LABORATORIES *Processing 6, 710-720.*

Experiment Experimental setup

List of sequence pairs compared by observers								3D display 1 3D display 2	
	3DQ4 3DQ0 3DQ3 3DQ3 3DQ3 3DQ1 3DQ0 3DQ1 2DQ4	VS VS VS VS VS VS VS VS VS	3DQ0 2DQ4 2DQ4 3DQ1 2DQ2 2DQ2 3DQ1 2DQ1 3DQ2		2DQ3 2DQ3 2DQ1 3DQ4 3DQ4 3DQ3 3DQ0 2DQ4 2DQ4	VS VS VS VS VS VS VS VS VS VS	2DQ1 3DQ2 3DQ2 3DQ3 2DQ3 2DQ3 2DQ3 2DQ1 2DQ2 2DQ4		3H Observer

- Comparing only several versions of the same content (intra-content comparison)
- 23" Polarized Display (Hyundai, Viewsonic V3D231) calibrated display
- Randomization of trials (sequentially and displays presentation)
- 35 Observers (vision screened)

- Motivation
- Experiment
- Results
- Conclusion

Results Preference of 3D over 2D in dependence of coding

- Preference of 3D over 2D increases when pictorial quality increase
- On average, **isopreference** achieved with **VQM = 0.24**
- No clear relation was found with depth quantity

Results

Mapping pairwise comparison data to a perceptual scale

	A1	A2	A3	A4		A3
A1	-	46	29	48		
A2	44	-	34	43	>	A4
A3	61	56	-	50		A1
A4	42	47	40	-		A2

• Bradley model: Mapping of the preference to a continuous scale

Results Quantitative preference of 3D over 2D

- Test design allowed to apply the Bradley model on the PC data \rightarrow Quantitative evaluation
- Evaluation of the "3D added value"

 Test design: PC intra sequences → No quantitative evaluation intra-sequences : unknown offset between BT-Score of different SRCs

> 3D Quality using ΔBT_{3D} : the difference between BT-Score of the 3D reference and 3D sequence

 $\Delta BT_{3D}(i) = BT_{3D}(i) - BT_{3D}(non \ encoded)$

Comparison of QoE though the "3D added value"
TELEKOM INNOVATION LABORATORIES

Results Quantitative preference of 3D over 2D

- Increase of preference of 3D over 2D when quality increase
- High content dependency

Results

Quantitative relation between quality and "3D added value" (2)

$3DAV = \alpha \cdot \Delta BT_{3D} + \beta$									
Content	α	β	Content	α	β				
Timelaps	0.54	-0.10	Alice7	0.33	-0.07				
Sky.Alignment	0.021	-0.94	Alice4	0.58	0.38				
Waterfall	0.08	-0.67	Hall	0.68	1.05				
Alice1	0.40	0.77	Sky.InsideGroup	0.38	-0.72				
TreeBranche	0.57	0.23	PauseOnARock	0.76	0.13				
Umbrella	0.76	-0.90	Firework	0.38	0.65				
LampBlowUp	0.41	0.53	CarRace3	0.51	1.33				
Drone	0.71	1.15	overall	0.71	1.15				

- High content dependency: codding affect "3D added value" with a ratio from 0.08 to 0.76
- On average, a ratio of 0.71 between 3D pictorial quality and the "3D added value" was found

- Motivation
- Experiment
- Results
- Conclusion

Conclusion

Preference of 3D over 2D depends on image quality and content characteristics

- Increase of pictorial quality provide an increase of preference of 3D over 2D
- > On average, a VQM of 0.21 was needed to reach the isopreference between 2D and 3D

Content characteristics vs. Coding

- There is a high content dependency of the effect of "3D pictorial quality" on "3D added value"
- On average, a factor of 0.71 was found between the effect of coding and the "3D added value"

Further research

• The explanation of the content dependency:

- > It may depends on depth quantity, depth quality, and visual discomfort
- > Previous work on content characterization should be applied to explain these data
- Content specificities and pictorial quality will be considered for 3D QoE prediction algorithm

THANKYOU!

LIFE IS FOR SHARING.